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Abstract

This paper is concerned with the efficient algorithm for damping optimization in
mechanical systems with prescribed structure. Our approach is based on the mini-
mization of the total energy of the system which is equivalent with the minimization of
the trace of the corresponding Lyapunov equation. Thus, the prescribed structure in
our case means that a mechanical system is close to the modally damped system. Even
though our approach is very efficient (as it was expected) for the mechanical systems
close to modally damped system, our experiments show that for some cases when sys-
tems are not modally damped the proposed approach provides efficient approximation
of the optimal damping.
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1 Introduction

We consider a damped linear vibration system described by the differential equation

Mẍ + Dẋ + Kx = 0 ,

x(0) = x0, ẋ(0) = ẋ0 ,

where M,D,K (called mass, damping, stiffness matrix, respectively) are real, symmetric
matrices of order n with M,K positive definite and D = Cu + C, where Cu is positive
definite and presents the internal damping and C represents external damping and it is
positive semidefinite. The matrix Cu is usually taken as a small multiple of the critical
damping or the proportional damping. In this paper we assume that internal damping is
a small multiple of mass matrix, that is Cu = αM .
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The problem of deriving an optimal damping in some sense is an old and widely
investigated problem which has been considered by many authors.

For example in [8] the question of placement of damping elements has been investi-
gated, while in [6] the problem of a periodic optimal control, which maximize the energy
dissipation, has been considered.

On the other hand the optimization problem which consider only viscosities’ optimiza-
tion, has been considered in the following papers [5], [13], [10], [11], [15] and [14].

Recently in papers [2], [3] and [1] authors considered approximations based on modal
eigenvectors which provide an efficient calculation of objective functions. The case of
mechanical systems with a given force was considered in the papers [12] and [7] where
authors derived an explicit formulas for objective functions for the particular types of
mechanical systems.

The purpose of this paper is to present a new results about approximation algorithms
for deriving the optimal damping. As we will show, in some cases determination of the
optimal damping can be given by an explicit formula, while in some other cases we present
a numerical approach for determination of optimal damping which can be efficiently im-
plemented.

We are going to use optimization criteria which has been considered in many papers,
like [16],[5], [11], [10], [15]. This optimization criteria is given by requirement of the
minimization of the total energy of the system, that is

∞∫

0

E(t) dt → min . (1.1)

Since, criterion (1.1) depends on the initial condition, the simplest way to correct this is
to take average of (1.1) over all initial states of the unit total energy and a given frequency
range. It can be shown that this average corresponds to the trace of the solution of the
corresponding Lyapunov equation.

Since, up to date an efficient general algorithm for the optimization of damping does not
exist, that is available algorithms optimize only viscosities of dampers, not their positions,
we propose a simple and efficient approach for the overall damping optimization. With
this new approach one can find optimal positions and corresponding dampers’ viscosities
efficiently with satisfactory accuracy.

Our approach is based on the fact that for the mechanical system which is modally
damped the all tree matrices M , D and K can be simultaneously diagonalized. Thus, the
main assumption here will be that we have the case where M , D and K are simultaneously
diagonalizible or that they are close to the case when all tree matrices can be simultane-
ously diagonalized. Although, this approach has been widely used by different scientific
communities, especially in the engineering, in this paper we propose a slightly different
perspective, which will allow us to determine the optimal damping very efficiently for a
certain structure of mechanical systems as as will be demonstrated later.

Moreover, since only the damping matrix D(v) depends on parameters usual ap-
proaches for the viscosity optimization (v) assume the preprocessing based on the di-
agonalization of the mass and stiffness matrices, M and K. On the other hand, in this
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paper we propose the new approach, which is based on the diagonalization of the damping
matrix D(v), and then calculation of the optimal viscosities. As we will show in this pa-
per, this approach can be very efficient for structured systems which allow us to determine
optimal viscosities, explicitly or numerically considerably faster.

For estimation of the optimal viscosity for a given dampers’ positions we propose a
new algorithm which is based on the simple “reduction” (truncation) of the corresponding
Lyapunov equation, which usually produce speed up more than 40 times. While for the
optimization of dampers’ positions we propose a new heuristic. The both algorithms are
based on certain heuristic and unfortunately we do not have bounds for their accuracy,
but as it will be illustrated in the last section in examples with Lyapunov equation of
modest dimensions (n ≤ 100) they perform very good, thus we assume that the obtained
results will be even better for bigger dimensions.

Currently, two types of algorithms are in use for the estimation of the optimal viscos-
ity (for a given dampers’ positions). The first type are the Newton-type algorithms for
one - dimensional problems which use some Lyapunov solvers, and the second type are
the algorithms which explicitly calculate the trace of the solution of the corresponding
Lyapunov equation.

Algorithms of the second type have been presented in [16], [11] or [15] and they consider
the case with one or more dampers with the same viscosity.

On the other hand, in [4] has been proposed the Newton-type algorithm for the case
with r ≥ 1 different dampers. As it has been shown in [15] the algorithm proposed in [4]
can produce a poor result due to the problems with determination of the starting point.

The paper is organized as follows. In Section 2 we precisely define problem setting while
in the Section 3 we present an approximation for our objective function. The problem of
damping optimization with particular emphasis on structured case was studied in Section
4. The efficiency and performance of proposed approach is illustrated in Section 5.

We will use the following notation, matrices written in the simple Roman fonts, M ,
D or K for example, will have O(n2) entries. Matrices written in the mathematical bold
fonts, A, B will have O(m2) entries, where m = 2n. The symbol ‖ · ‖ stands for the stand
2-norm.

2 Problem definition

As it has been mentioned in the introduction, the minimization of the total energy (1.1)
is equivalent to the minimization of the trace of the solution of corresponding Lyapunov
equation (more details one can find in [9], [11], [13], [5], [10]).

Thus, let
Mẍ + Dẋ + Kx = 0 (2.2)

be the differential equation describing a damped linear vibration system, where M,D,K

are mass, damping and stiffness matrix, respectively.
To (2.2) corresponds the eigenvalue problem

(λ2M + λD + K)x = 0 . (2.3)
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Just for the purpose of recapitulation of some basic properties of the eigenvalue problem
(2.3) we will use the eigenvalue decomposition

ΦT KΦ = Ω2 , ΦT MΦ = I , (2.4)

where
Ω = diag(ω1, . . . , ωn), ω1 ≤ . . . ≤ ωn . (2.5)

By setting
y1 = Ω ΦT x y2 = ΦT ẋ , (2.6)

(2.2) can be written as
ẏ = Ay , (2.7)

y =

[
y1

y2

]
, A =




0 Ω

−Ω −ΦT DΦ


 , (2.8)

(we are now in the 2n-dimensional phase space), with the solution

y = eAt y0 , where y0 is the initial data. (2.9)

It can be shown that criterion of the minimization of the total energy (1.1) is equivalent
to

tr(ZXΦ) → min , (2.10)

where XΦ is solution of the following Lyapunov euqation

ATXΦ + XΦA = −I .

and Z is a symmetric positive semidefinite matrix which may be normalized to have a unit
trace. If we take for the measure σ the measure generated by Lebesgue measure on R

2n,
we obtain Z = 1

2n
I. Without loss of generality, hereinafter we omit the factor 1

2n
from the

definition of the matrix Z.
While we have internal damping which is not trivial it can be shown that all eigen-

values of (2.3) lie in the left complex plane. That means that matrix A from (2.8) is
asymptotically stable.

Further it is easy to show that

tr(ZXΦ) = tr(Y) ,

where Y is a solution of the so-called ”dual Lyapunov equation”

AY + YAT = −Z. (2.11)

The structure of the matrix Z has been studied in detail in [9] and some of this results
are presented in [11].
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Through this paper we will assume that the matrix Z has the following form

Z =




0t1 0 0 0 0 0
0 Is 0 0 0 0
0 0 0t2 0 0 0
0 0 0 0t1 0 0
0 0 0 0 Is 0
0 0 0 0 0 0t2




, (2.12)

where Is is the s-dimensional identity matrix, and 0ti is the ti-dimensional (i = 1, 2) zero
matrix, where t1 and s are defined such that the eigenfrequencies from (2.5) smaller then
ωt1 and greater then ωt1+s are not dangerous (observe that t2 = n − t1 − s).

Note, that the solution of Lyapunov equation (2.11) is a function of several variables,
dampers positions and corresponding viscosities. Thus, the simultaneous optimization of
dampers’ positions and viscosity can be very demanding computationally. In the following
we will propose a new approach for dampers optimization.

First, in the next section we will present a new algorithm which approximate the
solution (as well as its trace) of the corresponding Lyapunov equation, and after that in
Section 4 we propose a new algorithm for finding optimal dampers’ positions.

3 Approximation of the solution of the Lyapunov equation

It is well known that the linearization from (2.8) is not unique. Thus for our purpose we
will rewrite (2.2) using the following linearization:

ẏ = A∗y , (3.13)

y =

[
y1

y2

]
, A∗ =




0 K
1

2 M−
1

2

−M−
1

2 K
1

2 −M−
1

2 DM−
1

2


 , (3.14)

Following the exposure from the previous section it follows that we are interested in
minimizing the trace

tr(ZY) ,

where Y is a solution of the Lyapunov equation

A∗

TY + YA∗ = −I , (3.15)

and Z is defined in (2.12).
Up to this point we did not introduce any new approaches or new ideas which we have

described in the introduction. Thus, in continuation we proceed with the presentation of
the new approach for approximation of the solution of Lyapunov equation (3.15) which is
different than the standard ones (mostly used by engineers), which is based on the modal
approximation of mechanical systems. Our approach will combine two aspects, one is a
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modal approximation approach and the other is approach based on the improved error
estimates e.g. see [2], [3] and [1].

For that purpose let

M−
1

2 DM−
1

2 = U0∆UT
0 , ∆ = diag(δ1, . . . , δn) , (3.16)

be the eigenvalue decomposition of the “damping matrix” M−
1

2 DM−
1

2 .
Let

T =

[
I 0
0 U0

]
(3.17)

be the orthogonal matrix where U0 is defined in (3.16). If one multiplies the Lyapunov
equation (3.15) from the left and from right with TT and T, respectively then one gets

ATX + XA = −I , (3.18)

where

A = TTA∗T =

[
0 BT

−B −∆

]
(3.19)

where B = UT
0 M−

1

2 K
1

2 and

X =

[
X11 X12

XT
12 X22

]
. (3.20)

Now equation (3.18) can be written as

[
0 −BT

B −∆

] [
X11 X12

XT
12 X22

]
+

[
X11 X12

XT
12 X22

] [
0 BT

−B −∆

]
= −

[
I 0
0 I

]
, (3.21)

where

Y = T

[
X11 X12

XT
12 X22

]
TT . (3.22)

It obviously holds tr(ZY) = tr(ZUX), where

ZU = TTZT . (3.23)

Now, from (3.21) one gets

BTXT
12 + X12B = I , (3.24)

−BTX22 + X11B
T − X12∆ = 0 , (3.25)

BX11 − X22B − ∆XT
12 = 0 , (3.26)

BX12 + XT
12B

T − ∆X22 − X22∆ = −I . (3.27)

From (3.24) it follows

X12 =
1

2
B−1 + SB−1 , where S = −ST . (3.28)
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Thus, if one knows the skew-symmetric matrix S from (3.28) then the solution X is known.
The new approach: As it has been described in the introduction our approach is

based on some interesting properties of the modally damped system. As it is well known
(for example see [17]), the modally damped system satisfies so called commuting condition

KD−1M = MD−1K . (3.29)

In continuation we will show that this assumption is equivalent to the assumption on
commuting X12 and B, that is we will show that if

X12B = BX12 , (3.30)

then (3.29) holds, and the mechanical system is modally damped.
If X12 and B commute, that is if (3.30) holds than (3.27) and (3.26) imply that

∆X22 + X22∆ = 2I (3.31)

X11 = B−1X22B + B−1∆XT
12 . (3.32)

Here we have used the fact that if (3.30) holds, then BX12 + XT
12B

T = I.
On the other hand the assumption that (3.30) holds implies that S from (3.28) is zero

matrix.
The main idea: In continuation we do not assume that (3.30) holds, that is our

mechanical system is no longer modally damped.
But if it is still “good in a some sense”, or “close” to a modally damped system we can

use the above conclusions to approximate solution X of the Lyapunov equation (3.18).
For that purpose, first we will approximate X12 from (3.28) with

X̃12 =
1

2
B−1 . (3.33)

Further, from (3.31) follows that

X̃22 = ∆−1 . (3.34)

Once we have derived X̃22 it is easy to derive the last unknown approximation X̃11. Indeed,
from (3.32) it follows

X̃11 = B−1X̃22B +
1

2
B−1∆B−T . (3.35)

In the next theorem we will present the residual error

Rer = ‖AT X̃ + X̃A + I‖ (3.36)

made by the approximation

X̃ =

[
X̃11 X̃12

X̃T
12 X̃22

]
, (3.37)
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which is equivalent as to insert approximations X̃11, X̃22 and X̃12 into (3.25).
The following theoretical results will be used for the error estimation which we have

made by the above approximation of the solution of the Lyapunov equation. Also, it
will be used for the a priori estimation, whether the considered mechanical system be
approximated with modally damped one.

Theorem 3.1. Let X̃ be the approximation of the solution (3.20) of the Lyapunov equation
(3.21). Then the residual error Rer is given by

Rer = ‖BT ∆−1 − B−1∆−1BBT‖ . (3.38)

Proof. The proof simply follows by inserting X̃ in (3.21). Indeed, from (3.37) and (3.21)
one gets

[
0 −BT

B −∆

] [
X̃11 X̃12

X̃T
12 X̃22

]
+

[
X̃11 X̃12

X̃T
12 X̃22

][
0 BT

−B −∆

]
= −

[
I Err

0 I

]
, (3.39)

where

−Err = −BT X̃22 + B−1X̃22BBT +
1

2

(
−B−1∆ + B−1∆

)
.

Now, since
Rer = ‖Err‖ ,

the (3.38) holds, which ends the proof.

Lemma 3.1. Let B = UT
0 M−

1

2 K
1

2 and ∆ = UT
0 M−

1

2 DM−
1

2 U0. Then BBT∆−1 =
∆−1BBT if and only if the mechanical system from (2.2) is modally damped, that is,
equality (3.29) holds.

Proof. Since B = UT
0 M−

1

2 K
1

2 and ∆ = UT
0 M−

1

2 DM−
1

2 U0 it follows that

BBT = UT
0 M−

1

2 KM−
1

2 U0 and ∆−1 = UT
0 M

1

2 D−1M
1

2 U0 .

Now, simple multiplication gives

BBT∆−1 = UT
0 M−

1

2 KD−1M
1

2 U0,

∆−1BBT = UT
0 M

1

2 D−1KM−
1

2 U0 ,

which together imply that if BBT∆−1 = ∆−1BBT that

KD−1M = MD−1K .

As the consequence of the above theorem we have the following corollary.
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Corollary 3.1. Let the assumptions of theorem 3.1 hold, that is

BBT∆−1 = ∆−1BBT ,

holds if and only (3.29) holds. Then X̃ = X are the solutions of the Lyapunov equation
(3.21).

Proof. If BBT∆−1 = ∆−1BBT then from (3.38) follows that Rer = 0, which implies that
X̃ = X.

4 The damping optimization

Using the approximation from the previous section here we will present a new approach to
the damping optimization. Thus, we assume that considered mechanical system is close
to the perturbed modally damped system, that is further on we assume that the residual
error Rer from (3.38) is small enough, which means that KD−1M ≈ MD−1K in some
sense.

For that purpose, let

M = UMΛMUT
M , UM =

[
u1 . . . un

]
, ΛM =

[
µ1 . . . µn

]
,

be the eigenvalue decomposition of the the mass matrix M .
We will distinguish two different cases. In the first one we assume that the damping

matrix D has the same eigenvector structure as the mass matrix M , that is we will assume
that

DI = ν1u1u
T
1 + ν2u2u

T
2 + . . . + νnunuT

n , (4.40)

where νi = vi + α, i = 1, . . . , n.
For the damping matrix which is close to DI , and in the case when the number of

dampers is equal to the dimension, that is when r = n, we will be able to derive the
explicit formula for the optimal damping’s viscosities vi, i = 1, . . . , n. On the other hand,
for the case when the number of dampers is less then dimension or some viscosities are
the same, we will present a formula that covers these cases in more general setting.

Thus, back to the first case, we will assume that the damping matrix D is close to DI

from (4.40), that is

D ≈ (v1 + α)u1u
T
1 + (v2 + α)u2u

T
2 + . . . + (vn + α)unuT

n . (4.41)

Below we will derive a simple formula for calculation of the optimal viscosities v1, . . . , vn,
for which the trace of the approximation X̃ from (3.37) is minimal.

If we are interested in damping the s undamped frequencies, then using the matrix Z

from (2.12) we obtain that for the matrix ZU from (3.23), can be written as

ZU

.
=

[
Z1 0
0 Z2

]
,
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where

Z1 = diag(0t1 , Is, 0t2) , (4.42)

Z2 = UT
0 diag(0t1 , Is, 0t2)U0. (4.43)

Since our penalty function is a trace of the solution of the corresponding Lyapunov
equation, note that for the approximation of the trace holds

tr(ZUX) ≈ tr(ZUX̃) = tr(Z1X̃11) + tr(Z2X̃22)

= tr(Z1X̃22) + tr(Z2X̃22) +
1

2
tr(B−1Z1∆B−T ) ,

that is

tr(ZUX) ≈ tr(ZUX̃) = tr(Z1∆
−1) + tr(Z2∆

−1) +
1

2
tr(Z1∆B−T B−1) . (4.44)

The approximation (4.44) will be our starting point which will allow us to derive
approximation for optimal v∗1 , . . . , v

∗

n.
Note that from (4.41) and (3.16) follows that

M−
1

2 DM−
1

2 = U0∆UT
0 , where ∆ = diag(v1 + α, v2 + α, . . . , vn + α) . (4.45)

Now from (4.44) and (4.45) one gets

tr(ZUX̃(v1, . . . , vn)) =
n∑

i=1

(Z1)ii + (Z2)ii
vi + α

+
1

2

n∑

i=1

(vi + α)(Z1)iibi , (4.46)

where bi = ‖T (:, i)‖2 , T = B−1 for i = 1, . . . , n.

Using the fact that all quantities in (4.46) are nonnegative, simply using the partial
derivatives,

δ

δvi

tr(ZUX̃(v1, . . . , vn)) = −
(Z1)ii + (Z2)ii

(vi + α)2
+

1

2
(Z1)iibi , i = 1, . . . , n , (4.47)

and equalizing to zeros, one gets that

v∗i =

√
2(Z1)ii + 2(Z2)ii

(Z1)iibi

− α , i = 1, . . . , n .

are minimum for the trace, that is

(v∗1 , . . . , v
∗

n) = arg min tr(ZUX̃(v1, . . . , vn)).

The setting given by (4.40) was just a motivation for a more general case that we will
consider in the next section.
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4.1 The damping optimization for the structured case

Trough this section we assume that the eigenvalue decomposition of the matrix M−
1

2 DM−
1

2

is given by

M−
1

2 DM−
1

2 = U0∆UT
0 , ∆ = v1D1 ⊕ v2D2 ⊕ · · · ⊕ vdDd (4.48)

where each matrix Di, i = 1, . . . , d is diagonal matrix and it has dimension di, i = 1, . . . , d,

respectively, with
d∑

i=1

di = n.

The above assumption, means that the matrix ∆ is direct sum of smaller matrices that
correspond to the same viscosities and it arises from the fact that very often the damping
matrix D can have blocks of dampers which have the same viscosities. Moreover, in
assumed setting the damping blocks with a different viscosities do not interlace with each
other.

Note that setting included in (4.40) is also covered by (4.48), since we can use this
approach also in the case when di = 1, ∀i = 1, . . . , n considering that all viscosities are
different. On the other hand, we would like to emphasize that form given in (4.48) general-
izes motivation setting (from previous sections where we assumed all different viscosities)
on the case when some viscosities can be the same. Moreover, it also includes more general
cases in which the damping matrix D is permutation-similar to the block diagonal matrix
where each block corresponds to the damping parts with its own viscosity parameter.

Similarly as the above if we are interested in damping the first s most important
eigenfrequencies, then the matrix ZU from (3.23), can be written as

ZU =

[
Z1 0
0 Z2

]
,

where Z1 and Z2 are given by (4.42-4.43).
Also, for the approximation of the trace it holds

tr(ZUX) ≈ tr(ZUX̃) = tr(Z1X̃22) + tr(Z2X̃22) +
1

2
tr(B−1Z1∆B−T ) ,

that is

tr(ZUX) ≈ tr(ZUX̃) = tr(Z1∆
−1) + tr(Z2∆

−1) +
1

2
tr(Z1∆B−T B−1) . (4.49)

Now using the approximation (4.49) together with (4.48) we can derive approximate
optimal parameters v∗1, . . . , v

∗

d.
In particular, from (4.48) and (4.49) one gets

tr(ZUX̃(v1, . . . , vd)) =

d∑

i=1

d1+···+di∑

j=d1+···+di−1+1

(Z1)jj + (Z2)jj
vi(Di)kjkj

+ α

+
1

2

d∑

i=1

d1+···+di∑

j=d1+···+di−1+1

(Z1)jjbj(vi(Di)kjkj
+ α) , (4.50)
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where kj determines index that depend on j and it holds that kj = j − (d1 + · · ·+ dj−1) .
Moreover, bi is the 2-norm of the column of the matrix T = B−1, that is bi = ‖T (:, i)‖2.

In general, for this function we are not able to derive an explicit formula form opti-
mal viscosities. But since in this case where, the matrix which diagonalizes the matrix
M−

1

2 DM−
1

2 is the same for all viscosities, we can determine optimal viscosities efficiently
by numerical optimization procedure which will be described in the next section.

Additionally, we are also able to derive an explicit formula for global minimum if
d∑

i=1

rank(Di) = n and α = 0. In that case our objective function has the following form:

tr(ZUX̃(v1, . . . , vd)) =

d∑

i=1

1

vi

d1+···+di∑

j=d1+···+di−1+1

(Z1)jj + (Z2)jj
(Di)kjkj

+
1

2

d∑

i=1

vi

d1+···+di∑

j=d1+···+di−1+1

(Z1)jjbj(Di)kjkj
. (4.51)

Using the fact that all quantities in (4.50) are nonnegative one easily obtains the partial
derivatives

δ

δvi

tr(ZUX̃(v1, . . . , vd)) = −

∑d1+···+di

j=d1+···+di−1+1
(Z1)jj+(Z2)jj

(Di)kjkj

v2
i

+
1

2

d1+···+di∑

j=d1+···+di−1

(Z1)jjbj(Di)kjkj
,

(4.52)

for i = 1, . . . , d. Now, by equalizing above derivations with zero, one gets that

v∗i =

√√√√√
2
∑d1+···+di

j=d1+···+di−1+1
(Z1)jj+(Z2)jj

(Di)kjkj∑d1+···+di

j=d1+···+di−1
(Z1)jjbj(Di)kjkj

, i = 1, . . . , d , (4.53)

are optimal viscosities, that is

(v∗1 , . . . , v∗d) = arg min tr(ZUX̃(v1, . . . , vd)) .

Remark 4.1. Objective function given by (4.50) for parameter α 6= 0 can be efficiently
optimized using numerical optimization procedure. In particular, in this case we are
dealing with minimization of d function where ith function fi is given by

fi(vi) =

d1+···+di∑

j=d1+···+di−1+1

(Z1)jj + (Z2)jj
vi(Di)kjkj

+ α
+

d1+···+di∑

j=d1+···+di−1+1

(Z1)jjbj(vi(Di)kjkj
+ α) , (4.54)

for i = 1, . . . , d. Here function fi is strictly convex function with global minima v∗i , for
i = 1, . . . , d respectively, where minima v∗i , for i = 1, . . . , d can be efficiently determined
using iterative solvers. By this approach we are able to determine optimal parameters v∗i ,

for i = 1, . . . , d that minimizes tr(ZUX̃(v1, . . . , vd)).
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4.2 The damping optimization for the general case

In this section we consider a more general case, then the two from the previous sections,
but still we assume that our system corresponds to the configuration where (3.38) is small
enough, or that approximation KD−1M ≈ MD−1K holds in a a certain sense.

Since, M is a positive definite and D is a positive semidefinite matrix, there exists an
orthogonal matrix U such that

M−
1

2 DM−
1

2 = U∆UT , ∆ = diag(δ1, . . . , δn). (4.55)

Apart from the previous cases where we are able to derive an explicit formula for the
global minima, in this section we will present a numerical approach for calculation of an
approximation of the optimal viscosities. The main problem within this general case is
that the matrix U which diagonalizes the matrix M−

1

2 DM−
1

2 depends on viscosities that
determine the damping matrix D, contrary the cases from previous sections.

Thus, let us assume that is a given d dampers with corresponding viscosities vi, i =
1, . . . , d, which determine our external damping matrix C(v1, . . . , vd), that is damping
matrix is given by D(v1, . . . , vd) = Cu +C(v1, . . . , vd). Since in general the matrix U from
(4.55) depends on viscosities, let U0 be the unitary matrix which diagonalize D(v0

1 , . . . , v
0
d)

for the initial viscosities (v0
1 , . . . , v

0
d).

Now similarly as in the beginning of this section, we can calculate approximation of
the trace of the solution of the corresponding Lyapunov equation for the given viscosities
(v0

1 , . . . , v0
d). That is, similarly as the above we can show that

tr(ZUX̃(v0
1 , . . . , v

0
d)) =

n∑

i=1

(Z2)ii + (Z1)ii
δi

+
1

2

n∑

i=1

δi(Z1)iibi , (4.56)

where Z1 and Z2 are given by (4.42-4.43) and

M−
1

2 (D(v0
1 , . . . , v

0
d))M−

1

2 = U0∆UT
0 , ∆ = diag(δ1, . . . , δn) , (4.57)

bi = ‖T0(:, i)‖
2 , T0 = B−1 , i = 1, . . . , n. (4.58)

Now, we do not have an explicit formula for the optimal viscosities, thus we propose the
following numerical approach for viscosity optimization.

During the optimization process, the next iteration (for viscosities) (v1
1 , . . . , v

1
d) can be

calculated using corresponding matrix U1, given as

M−
1

2 (D(v1
1 , . . . , v

1
d))M

−
1

2 = U1∆UT
1 , ∆ = diag(δ1

1 , . . . , δ1
n) ,

which insures the corresponding trace approximation. Here is important to notice, that
very often, during the optimization process, the same subspace U is also good for a several
iteration steps (that is for a several viscosity updates). Thus, during the optimization
process we first check if the same subspace is good enough, meaning that the residual
error

erU = ‖MU − diag(MU
11,M

U
22, . . . ,M

U
nn)‖ < tolU (4.59)
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where MU = UT
0 M−

1

2 (Cu + C(v1
1, . . . , v

1
d))M

−
1

2 U0 and tolU is some given tolerance.
This means that in optimization process if erU defined in (4.59), for viscosities (v1

1 , . . . , v
1
d)

is smaller than the tolerance tolU we will use the unitary matrix U0 instead of U1 for ap-
proximation of the trace tr(ZUX̃(v1

1 , . . . , v
1
d)).

The algorithm for the optimization of the viscosities is summarized in the Algorithm
1.

We would like to emphasize that the main cost in the trace approximation (4.56)
belongs to the calculation of the matrix U , thus, in Algorithm 1 by using the residual
tolerance tolU we can avoid calculation of the matrix U for some viscosities (vi

1, . . . , v
i
d)

(for some i’s) which significantly accelerates the optimization process. Moreover, as one
could expect, the matrix U does not need to be calculated (up to tolerance tolU ) in each
step of iterations (for the various viscosities (vi

1, . . . , v
i
d)) if mechanical system has some

special structure or if the changes in viscosities are small (which often appears during the
optimization process).

Remark 4.2. Note that using Algorithm 1 we can also minimize objective functions given
by (4.50). In that case the errU will be zero (up to machine tolerance) and we will be
able to calculate approximation of the objective function without calculating the matrix
U at each step. On the other hand, since in this case the objective function consists of
d independent functions it is even more efficient to use an approach described in Remark
4.1.

5 Numerical experiments

In this section we will illustrate the performance of the new approach on two examples
which consider the mechanical system, so called the n-mass oscillator. In all examples we
will take ZU = I.

Example 5.1. In this example we consider the system from (2.2) with dimension n = 20,
where the mass and the stiffness matrices are defined as:

M = diag(m1,m2, . . . ,mn) ,

mi =

{
200 − 20(i − 1) , i = 1, . . . , 10
201 + 20(i − 11) , i = 11, . . . , 20

K =




4 −1 −1
−1 4 −1 −1
−1 −1 4 −1 −1

. . .
. . .

. . .
. . .

. . .

−1 −1 4 −1 −1
−1 −1 4 −1

−1 −1 4




.

Structure of masses and stiffness is shown on Figure 5.1. Further, the damping matrix

14



Algorithm 1 Computation of optimal viscosities

Require: System matrices; tolerance tolU for updating eigensubspace U ; starting viscosi-
ties (v0

1 , . . . , v
0
d).

Ensure: Approximation of optimal viscosities.
1: Calculate approximation of the trace given in (4.56) and U0 given in (4.57). Set

U = U0.
2: Find optimal viscosities by using an appropriate optimization procedure (e.g. the

Nelder-Mead algorithm). Evaluate the function value using trace approximation at
the given viscosities (vi

1, . . . , v
i
d) as in steps 3 to 8:

3: Calculate the error for the subspace U from

erU = ‖MU − diag(MU
11,M

U
22, . . . ,M

U
nn)‖

where MU = UT M−
1

2 (Cu + C(vi
1, . . . , v

i
d))M

−
1

2 U .
4: if errU < tolU then

5: Compute function value at viscosities (vi
1, . . . , v

i
d) using

tr(ZUX̃(vi
1, . . . , v

i
d)) =

n∑

i=1

(Z2)ii + (Z1)ii
δi

+
1

2

n∑

i=1

δi(Z1)iibi ,

where where Z1 and Z2 are given by (4.42-4.43) and

∆ = diag(δ1, . . . , δn), δi = (UT M−
1

2 (Cu + C(vi
1, . . . , v

i
d))M

−
1

2 U)ii , i = 1, . . . , n.

6: else

7: Compute new U and ∆, such that

M−
1

2 DM
1

2 = U∆UT , ∆ = diag(δ1, . . . , δn) .

Compute function value at viscosities (vi
1, . . . , v

i
d) using formula

tr(ZUX̃(vi
1, . . . , v

i
d)) =

n∑

i=1

(Z2)ii + (Z1)ii
δi

+
1

2

n∑

i=1

δi(Z1)iibi ,

where bi = ‖T0(:, i)‖
2 , T0 = B−1, i = 1, . . . , n and Z1, Z2 are given by

(4.42-4.43).
8: end if
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Figure 5.1: n-mass oscillator

has the block diagonal structure D = diag(D1,D2, . . . ,D10) where each block has its own
viscosity vj for j = 1, . . . , 10. The block diagonal structure of the matrix D is shown at
the Figure 5.2.
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20

nz = 40

Figure 5.2: Block diagonal structure of matrix D
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The blocks are defined as:

Di =




vi + vip −vip 0
−vip vi + 2vip −vip

0 −vip vi + vip


 , i = 1, 2, 3,

Di =

[
vi + vip −vip

−vip vi + vip

]
, i = 4, 5, 6, 7,

Di =
[
vi + vip

]
, i = 8, 9, 10,

where p = 0.001.

We will calculate the optimal viscosities for the two different cases:

Case 1. In the first case we assume that there is no internal damping, that is α = 0.
For the purpose of comparison we will present the optimal viscosity and correspond-

ing minimal trace, denoted with (v∗, tr(X̃(v∗))), obtained by direct calculations using the
formula (4.53) and the optimal viscosity and corresponding minimal trace denoted with
(v, tr(X(v))), obtained by the minimization of the trace of ”dual Lyapunov equation” of
equation (3.18) directly with MATLAB’s function fminsearch, where we have used MAT-
LAB’s function lyap for solving Lyapunov equations.

For (v∗, tr(X̃(v∗))) and (v, tr(X(v))) we have obtained the following:

v∗ =




37.9626
23.3395
14.7396
19.4686
28.6084
32.6407
38.6879
45.7553
54.7100
64.6193




, tr(X̃(v∗)) = 487.4226, v =




38.1249
23.1773
14.5789
17.4601
28.4168
32.4962
38.5573
45.6625
55.0314
65.0329




, tr(X(v)) = 484.8125 .

Thus, the relative errors for the obtained approximations are:

errv =
||v − v∗||

||v||
= 0.0171, (5.1)

errtr =
|| tr(X̃(v∗)) − tr(X(v))||

|| tr(X(v))||
= 0.0054. (5.2)

Here the residual error from (3.38) is Rer = 0.3534. This shows that even if the consider
mechanical system is not very close to the modally damped one (Rer is not significantly
smaller than 1) the formula (4.53) still insures the satisfying result.
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Case 2. Within the second case we will assume the existence of the internal damping,
thus let α = 0.01 be coefficient of the internal damping.

As it has been emphasized in Remark 4.1 for the case α 6= 0 one can not use for-
mula (4.53) directly. Thus we will use Newton’s method for optimization of the trace
approximation given by formula (4.54). Again by (v∗, tr(X̃(v∗))) we denote the obtained
approximation for the optimal viscosity and corresponding minimal trace. Similarly, by
(v, tr(X(v))) we denote the optimal viscosity and corresponding function value obtained by
the minimization of the trace of ”dual Lyapunov equation” of equation (3.18) directly with
MATLAB’s function fminsearch, where Lyapunov equation was solved by MATLAB’s
function lyap.

Here are the obtained quantities:

v∗ =




36.3126
21.9638
13.9714
15.8175
26.1052
29.7869
35.4482
42.2551
51.4233
61.2265




, tr(X̃(v∗)) = 486.3990, v =




36.1512
22.1206
14.0986
17.6473
26.2969
29.9301
35.5781
42.3487
51.1036
60.8131




, tr(X(v)) = 483.9260 .

For the relative errors defined in (5.1), (5.2) here we have:

errv = 0.0169, errtr = 0.0051.

In this example the residual error from (3.38) has the similar magnitude that is Rer =
0.3049.

In the second example we will consider a more general structure.

Example 5.2. In this example we will consider the system from (2.2) with dimension
n = 500 and the matrices M and K defined as:

M = 103diag(m1,m2, . . . ,mn) ,

mi =

{
200 − 20(i − 1) , i = 1, . . . , 250
201 + 20(i − 11) , i = 251, . . . , 500

K =




10 −1
−1 10 −1

−1 10 −1
. . .

. . .
. . .

−1 10 −1
−1 10




.
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The damping matrix D has the block diagonal structure as follows

D =




0
D1

0
D2

0




+ Cu . (5.3)

where α = 0.01 and 0 represents a zero matrix of the corresponding dimension. The matrix
Di is defined as:

Di =




vi1 + vi1p −vi1p

−vi1p vi1 + 2vi1p −vi1p

vi1p vi1 + (vi1 + vi2)p + v12
−vi2p

−vi2p v12
+ vi2p


 ,

where p = 0.01. Thus, the each block has 2 different viscosities, which means that we have
4 different viscosity parameters to optimize.

Again we will compare the approximation of the optimal viscosities obtained by our new
approach proposed in section (4.2) with the optimal viscosity obtained by the minimization
of the trace of of ”dual Lyapunov equation” of equation (3.18) directly with MATLAB’s
function fminsearch, based on the MATLAB’s function lyap for solving Lyapunov equa-
tions.

This comparison has been performed for the different positions of the matrices D1,D2,
that is for in each new configuration we will change the position of matrices D1 and D2.
The following configurations are taken into consideration:

(i, j) ∈ {(2, 17), (2, 67), (2, 117), (2, 267), (2, 317), (52, 67), (52, 117), (52, 167), (52, 267),

(52, 317), (52, 367), (52, 417), (102, 117), (102, 217), (102, 367), (152, 167), (152, 267),

(152, 317), (202, 417), (252, 267), (252, 367), (252, 417), (252, 467), (302, 367), (302, 417)

(352, 417), (352, 467)}

where i represents position of the matrix D1 and j represents position of the matrix D2.
The Figure (5.3) shows the relative error

errtr =
|| tr(X(v)) − tr(X̃(v∗))||

|| tr(X(v))||
,

for each configuration.
During the optimization process using Algorithm 1, we have calculated the percentage

of updates of the matrix U with the tolerance tolU = 10−5. The number of updates for
each configuration is shown on the Figure (5.4).
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Figure 5.3: Relative errors errtr for different positions of matrices D1,D2
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Figure 5.4: Percentage of updating matrix U for different positions of matrices D1,D2
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Moreover, in order to illustrate the quality of the new approach using the surface plot
in prescribed viscosities, we will set v1 = v3, v2 = v4, while v1 and v2 vary in segments
[40, 200], [200, 340], respectively. The block with viscosities v1, v2 starts at position 242 and
block with v3, v4 starts at 470.

For the first step in iterations we have used the matrix U which is defined by the optimal
viscosities v1 = 101.4445 and v2 = 268.3622, while during the iteration process the matrix
U has been updated with the tolerance tolU = 10−5.

In Figure (5.5) we can see relative error

errrel =
||flyap − faprox||

||flyap||
,

in which flyap represents the trace of the solution of the Lyapunov equation for certain
viscosities v1, v2 and faprox represents the trace calculated by our algorithm. Relative error
is less then 10−7.

Conclusion

Trough this paper we have considered the damping optimization for the mechanical
system Mẍ + D(v)ẋ + Kx = 0. Since only the damping matrix D(v) depends on pa-
rameters, the typical (or often used, standard) approach for the viscosity optimization (v)
assumes the preprocessing based on the diagonalization of the mass and stiffness matrices,
M and K.

Contrary to this approach, we propose the new approach, which is based on the diag-
onalization of the damping matrix D(v), and then calculation of the optimal viscosities.
This is the main contribution of this paper, that is we have shown that slightly change in
paradigm of damping optimization, for a certain structure, can significantly improve the
performance of optimization methods.

Although, in general the new approach can not be more efficient then the standard
one, we have shown that in the case when M , D and K are closed to the the case when all
three can be simultaneously (or when the mechanical system is closed to modally damped
one) we can derive optimal viscosities, explicitly or numerically very efficiently.

We have also provided the bounds which can be easily used to determine whether
the considered mechanical system is suitable for applying the new approach , that are
considered mechanical system close to modally damped one or not.

Our numerical examples show that with proposed approach we can obtain satisfactory
approximation for optimal parameters. Moreover, we illustrate that with our approach we
can significantly accelerate optimization process for the structured systems.
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